Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+3 votes
474 views
in Binomial Theorem by (339 points)
closed by
In the Expansion of \( \left(2 x^{2}+r x+1\right)^{6} \), where \( r \) is a number and \( x \) is a variable, the coefficient of \( x^{2} \) and \( x^{4} \) are 27 and \( -192 \) respectively find The possible value of \( r \)

1 Answer

+1 vote
by (5.9k points)
selected by
 
Best answer

Given expression:- (2x2 + rx + 1)6 

The general term of this expression = 6!(p! q! r!) × 1p × rxq  × (2x2)

= 6!/ (p! q! r!) × rq × 2r × (xq + 2r)

               

Case1:-  

 xq +2r = x2 

q + 2r = 2 

Also, p + q + r = 6, 

The possible values of p, q, r are (4,2,0) and (5,0,1) 

The coefficient of x2 = 27(given)

[{6! / (4! 2! 1!)} × r2 × 20]  + [{6! / (5! 0! 1!)} × r0 × 21] = 27

[{6! / (4! 2!)} × r2] + [{6! / (5! 1!)} × 2] = 27

15r2 + 12 = 27

15r2 = 15 ∴r = ±1 .... (1)  

Case2:- 

xq + 2r = x11

q + 2r = 11 

Also, p + q + r = 6

The only possible value of p, q, r is (0,1,5) 

The coefficient of x11 = -192

{6! / (0! 1! 5!)} × r1 × 25 = -192

{6! / 5!} × r × 32 = -192

6r = -6

r = -1 .... (2) 

From (1) and (2), r = -1

by (85 points)
+1
Your answer is also correct!
by (339 points)
+1
Thanksssssss

Related questions

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...