Given, 2sin A = 1
∴ sin A = 1/2
we know that,
cos2 A = 1 – sin2 A = 1 – \((\frac{1}{2})^2 = 1 -\frac{1}{4}= \frac{3}{4}\)
∴ cos A = ± \(\frac{\sqrt3}{2}\)
Since \(\frac {\pi}{2} < A < \pi\)
A lies in the 2nd quadrant.
∴ cos A = -\(\frac{\sqrt3}{2}\)
tan A = \(\frac{sin A}{cos A} = \cfrac {\frac{1}{2}}{-\frac{\sqrt3}{2}} =-\frac{1}{3}\)
Also, \(\sqrt2 \) cos B = 1
∴ cos B = \(\frac{1}{\sqrt2}\)
We know that,
Sin2 B = 1 - cos2 B = 1 -\((\frac{1}{\sqrt2})^2 \frac {1}{2} = \frac {1}{2}\)
∴ Sin B = ±\(\frac{1}{\sqrt2}\)
since \(\frac{3\pi}{2} < B < 2\pi\)
B lies in the 4th quadrant,
