We know that,
cot2 θ = cosec2 θ – 1
∴ cot θ . cot θ = (cosec θ + 1)(cosec θ – 1)
∴ \(\frac {tan\theta}{sec\theta+1} =\frac{sec\theta-1}{tan\theta}\)
By the theorem on equal ratios, we get
∴ \(\frac {tan\theta}{sec\theta+1} =\frac{sec\theta-1}{tan\theta}\) = \(\frac{tan\theta+sec\theta-1}{sec\theta+1+tan\theta}\)
∴ = \(\frac{tan\theta+sec\theta-1}{sec\theta+1+tan\theta} = \frac {tan\theta}{sec\theta+1}\)
Alternate Method
