μ1 = 1.5
f1 = 20 cm
μ2 = 1.25
f2 = ?
\(\frac{1}{f_1} = (μ_1 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)\)
\(\frac{1}{20}\) \(= (1.5 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) ....(1)\)
\(\frac{1}{f_2} = \left(\frac{μ_1}{\mu_2} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)\)
\(\frac{1}{f_2} = \left(\frac{1.5}{1.25} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)\)
\(\frac{1}{f_2}\) \(= (1.2 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) ....(2)\)
on dividing equation \(\frac{(1)}{(2)}\)
\(\frac{f_2}{20} = \frac{.5}{.2}\)
\(f_2 = \frac{5}{2} \times 20\)
f2 = 50 cm
A convex lens is a converging lens. In a convex lens, the ray of light traveling parallel to the principle axis actually converge at a point, the focus is called the real focus. hence it's focal length is as positive.