Let a function f: `[0,5] rarr R` be continuous , f(1) =3 and F be definded as : `F(x)=int_(1)^(x)t^2 g(t)dt,` where `g(t) = int_(1)^(t)f(u)du.`
Then for the function F, the point x=1 is
A. a point of local minima ,
B. not a critical point.
C. a point of indflection.
D. a point of local maxima