Correct answer is:- (D) f(x) = x2 - 15x + 57
Explanation:- Let,
f(x) = ax2 + bx + c... (1)
Now, f(x + 5) = a(x + 5)2 + b(x + 5) + c
x2 - 5x + 7 = ax2 +10ax + 25a + bx + 5b + c.
Comparing the coefficient of x2, we get a = 1,
x2 - 5x + 7 = x2 + 10x + 25 + bx + 5b + c
-15x - 18 = bx + 5b + c,
Comparing the coefficient of x, we get b = -15,
-15x - 18 = -15x - 75 + c
c = 57.
Putting the values of a, b and c in (1) we get,
f(x) = x2 - 15x + 57.
Therefore, the required polynomial is x2 - 15x + 57