Given equation of the hyperbola is \(\frac {x^2}{5} - \frac {4y^2}{5} = 1\)
\(\frac {x^2}{5} - \frac {y^2}{\frac {5}{4}} = 1\)
Comparing this equation with \(\frac {x^2}{a^2} - \frac {y^2}{b^2} = 1\)
we get
a2 = 5, b2 = 5/4
Given equation of line is 3x – 4y = k
y = 3/4 x - k/4
Comparing this equation with y = mx + c, we get
m = 3/4, c = - k/4
For the line y = mx + c to be a tangent to the hyperbola \(\frac {x^2}{a^2} - \frac {y^2}{b^2} = 1\),
we must have c2 = a2 m2 – b2

⇒ k2 = 25
⇒ k = ±5
Alternate method:
Given equation of the hyperbola is
\(\frac {x^2}{5} - \frac {4y^2}{5} = 1\) …….(i)
Given equation of the line is 3x – 4y = k
y = 3x-k/4
Substituting this value of y in (i), we get

⇒ 4x2 – (9x2 – 6kx + k2 ) = 20
⇒ 4x2 – 9x2 + 6kx – k2 = 20
⇒ -5x2 + 6kx – k2 = 20
⇒ 5x2 – 6kx + (k2 + 20) = 0 …..(ii)
Since, the given line touches the given hyperbola.
The quadratic equation (ii) in x has equal roots.
(-6k)2 – 4(5)(k2 + 20) = 0
⇒ 36k2 – 20k2 – 400 = 0
⇒ 16k2 = 400
⇒ k2 = 25
⇒ k = ±5