Let the required equation of hyperbola be \(\frac {x^2}{a^2} - \frac {y^2}{b^2} = 1\)
Length of conjugate axis = 2b
Given, length of conjugate axis = 5
2b = 5
b = 5/2
b2 = 25/4
Distance between foci = 2ae
Given, distance between foci = 13
2ae = 13
ae = 13/2
a2 e2 = 169/4
Now, b2 = a2 (e2 – 1)
b2 = a2 e2 – a2
25/4 = 169/4 - a2
a2 = 169/4 - 25/4 = 36
∴ The required equation of hyperbola is \(\frac {x^2}{36} - \frac {y^2}{\frac {25}{4}} = 1\)
i.e., \(\frac {x^2}{36} - \frac {4y^2}{25} = 1\)