The correct choice is (a) (-(frac{partial^2 u}{partial x^2})_{i,j}frac{Delta x}{2})
Explanation: The Taylor series expansion of ui+1,j is
(u_{i+1,j}=u_{i,j}+(frac{partial u}{partial x})_{i,j} Delta x+(frac{partial ^2 u}{partial x^2})_{i,j} frac{(Delta x)^2}{2}+⋯)
(frac{u_{i+1,j}-u_{i,j}}{Delta x}=(frac{partial u}{partial x})_{i,j}+(frac{partial^2 u}{partial x^2})_{i,j}frac{Delta x}{2}+⋯)
((frac{partial u}{partial x})_{i,j}=frac{u_{i+1,j}-u_{i,j}}{Delta x}-(frac{partial^2 u}{partial x^2})_{i,j}frac{Delta x}{2}-…)
The term –((frac{partial^2 u}{partial x^2})_{i,j}frac{Delta x}{2}-… )is truncated. So, the first term of truncation error is –((frac{partial^2 u}{partial x^2})_{i,j}frac{Delta x}{2}).