Correct Answer - Option 4 : a
2 + b
2 = c
2 + d
2
Concept:
If z = x + iy
Where,
x and y are real and imaginary parts of z and
i = √-1
Modulus of z:
|z| = \(\sqrt{x^2\ +\ y^2}\)
Calculation:
Given that
a + ib = c + id
Taking modulus of both side
⇒ |a + ib| = |c + id|
⇒ \(\sqrt{a^2\ +\ b^2}\ =\ \sqrt{c^2\ +\ d^2}\)
⇒ a2 + b2 = c2 + d2