Correct Answer - Option 1 : Zero
Concept:
System of equations
a1x + b1y = c1
a2x + b2y = c2
For unique solution
\(\frac {a_1}{a_2}≠ \frac {b_1}{b_2}\)
For Infinite solution
\(\frac {a_1}{a_2}= \frac {b_1}{b_2}= \frac {c_1}{c_2}\)
For no solution
\(\frac {a_1}{a_2}=\frac {b_1}{b_2}≠ \frac {c_1}{c_2}\)
Calculation:
Given:
3x - y= -3
3x - y = -5
a1 = 3, b1 = -1 and c1 = -3
and a2 = 3, b1 = -1 and c2 = -5
\(\frac 3{3}=\frac {-1}{-1}≠ \frac {-3}{-5}\)
Hence this shows that the number of solutions for given simultaneous algebraic equations is zero.