Correct Answer - Option 3 :
\(e^{-\frac{2}{3}}\)
Explanation:
Assuming errors are randomly distributed throughout the book and x, the number of errors per page has a poisson distribution.
\(P\left( {X = x} \right) = \frac{{{e^{ - λ }} \cdot {λ ^x}}}{{x!}}\;\;\;\;\;\;\left( {x = 0,\;1,\;2, \ldots .} \right)\)
Probability of mistakes = \(\frac{40}{600}=\frac{1}{15}\)
Mean λ = np ⇒ \(10\times \frac{1}{15} = \frac{2}{3}\)
\(P\left( {X = 0} \right) = \frac{{{e^{ - λ }} \cdot {λ ^0}}}{{0!}}\)
\(P\left( {X = 0} \right) = {{{e^{ - λ }} {λ ^0}}}{{}}\)
\(P\left( {X = 0} \right) = {{{e^{ - 2/3 }} {}}}{{}}\)