Correct Answer - Option 4 : [-1, 1/11]
Calculation :
Let f(x) = \(x - 2 \over x^2 + x + 3\) = y
⇒ yx2 + yx + 3y - x + 2 = 0
⇒ yx2 + (y - 1)x + 3y + 2 = 0
f(x) can have any value y, provided the above equation in x has real roots.
∴ b2 - 4ac ≥ 0
⇒ (y - 1)2 - 4y(3y + 2) ≥ 0
⇒ -11y2 - 10y + 1 ≥ 0
⇒ 11y2 + 10y - 1 ≤ 0
⇒ (11y - 1)(y + 1) ≤ 0
⇒ -1 ≤ y ≤ \(1\over 11\)
So, the range of y or f(x) is [-1, 1/11]
The Domain of a function f(x) is the set of all the values for which the function is defined, and the Range is the set of all the values that function f(x) takes.