Correct Answer - Option 1 : 45.2°C
Concept:
Sol-air temperature (Tsol-air) is a variable used to calculate the cooling load of a building and determine the total heat gain through exterior surfaces. it is calculated by,
\({{\rm{T}}_{{\rm{sol}} - {\rm{air}}}} = {{\rm{T}}_0} + \frac{{\left( {{\rm{α I}} - {{∇\rm{Q}}_{{\rm{ir}}}}} \right)}}{{{{\rm{h}}_{\rm{o}}}}}\)
Where T0 = Ambient temperature, α = Absorptivity, I = Solar irradiation, ∇ Qir = Extra infra red radiation, ho = Heat transfer coefficient.
Calculation:
Given:
α = 0.9, T0 = 35°C, ho = 23 W/m2K, I = 260 W/m2
\({{\rm{T}}_{{\rm{sol}} - {\rm{air}}}} = {{\rm{T}}_0} + \frac{{\left( {{\rm{α I}} - {{∇\rm{Q}}_{{\rm{ir}}}}} \right)}}{{{{\rm{h}}_{\rm{o}}}}}\)
\({{\rm{T}}_{{\rm{sol}} - {\rm{air}}}} = {35} + \frac{{\left( {{\rm{0.9\;\times \;260}} - {0}} \right)}}{{{{\rm{23}}}}}\)
Tsol-air = 45.2°C