Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
99 views
in Calculus by (106k points)
closed by
In Fourier series \(f\left( x \right) = {a_0} + \mathop \sum \limits_{n - 1}^\infty \left\{ {{a_n} + \cos \left( {nx} \right) + {b_n}\sin \left( {nx} \right)} \right\}\)
1. \({a_0} = \frac{1}{{2\pi }}\mathop \smallint \limits_{ - \pi }^\pi f\left( x \right)dx\)
2. \({a_0} = \mathop \smallint \limits_{ - \pi }^\pi f\left( x \right)dx\)
3. \({a_0} = \frac{1}{{2\pi }}\mathop \smallint \limits_{ - \pi }^\pi f\left( x \right)\sin \left( x \right)dx\)
4. None of these

1 Answer

0 votes
by (103k points)
selected by
 
Best answer
Correct Answer - Option 1 : \({a_0} = \frac{1}{{2\pi }}\mathop \smallint \limits_{ - \pi }^\pi f\left( x \right)dx\)

The Fourier series coefficients are:

\({{\rm{a}}_0} = \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}}\)

\({{\rm{a}}_{\rm{n}}} = \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{f}}\left( {\rm{x}} \right)\cos {\rm{nxdx}}\)

\({{\rm{b}}_{\rm{n}}} = \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{f}}\left( {\rm{x}} \right)\sin {\rm{nxdx}}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...