Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
199 views
in Mathematics by (101k points)
closed by
Numerically integrate, f(x) = 10x - 20x2 from lower limit a = 0 to upper limit b = 0.5. Use Trapezoidal rule with five equal subdivisions. The value (in units, round off to two decimal places) obtained is ______.

1 Answer

0 votes
by (102k points)
selected by
 
Best answer

Concept:

\(I = \mathop \smallint \limits_a^b f\left( x \right)\;dx\)

\({\rm{Number\;of\;intervals}} = \frac{{{\rm{b}} - {\rm{a}}}}{{\rm{h}}}{\rm{\;}}\)

where,

b is the upper limit, a is the lower limit, h is the step size

According to the trapezoidal rule

\(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \frac{{\rm{h}}}{2}\left[ {{{\rm{y}}_{\rm{o}}} + {{\rm{y}}_{\rm{n}}} + 2\left( {{{\rm{y}}_1} + {{\rm{y}}_2} + {{\rm{y}}_3}{\rm{\;}} \ldots } \right)} \right]\)

Here, the interval [a, b] is divided into n number of intervals of equal width h.

It fits for a 1-degree polynomial.

Calculation

Given, Upper limit b = 0.5,

Lower limit a = 0, divided into 5 divisions 

Step size (h) = (0.5 - 0)/5 = 0.1 

 f(x) = 10x - 20x2 

x

0

0.1

0.2

0.3

0.4

0.5

f(x)

0

0.8

1.2

1.2

0.8

0

 

\(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \frac{{\rm{h}}}{2}\left[ {{{\rm{y}}_{\rm{o}}} + {{\rm{y}}_{\rm{5}}} + 2\left( {{{\rm{y}}_1} + {{\rm{y}}_2} + {{\rm{y}}_3}+ {{\rm{y}}_4}{\rm{\;}}} \right)} \right]\)

\(\mathop \smallint \limits_{\rm{a}}^{\rm{b}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = \frac{{\rm{h}}}{2}\left[ {{{\rm{y}}_{\rm{o}}} + {{\rm{y}}_{\rm{5}}} + 2\left( {{{\rm{y}}_1} + {{\rm{y}}_2} + {{\rm{y}}_3}+ {{\rm{y}}_4}{\rm{\;}}} \right)} \right]\)

\(I = \frac{1}{2} \times \left[ {\left( {0 + 0} \right) + 2\left( {0.8 + 1.2 + 1.2 + 0.8} \right)} \right]\)

 I = 0.4

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...