Correct Answer - Option 3 : ω
0 = 1,
\({C_n} = x\left[ -n \right]\)
Concept:
If f(n) is a signal then its DTFT will be defined As.
\(F\left( {{e^{j\omega }}} \right) \leftrightarrow \;\mathop \sum \nolimits_{n = - \infty }^\infty f\left( n \right){e^{ - j\omega n}}\)
Analysis:
x(n) ↔ X(ejω)
\(X\left( {{e^{j\omega }}} \right) = \mathop \sum \nolimits_{n = - \infty }^\infty x\left( n \right){e^{ - j\omega n}} \ ..(i)\)
It is given that:
\(X\left( {{e^{j\omega }}} \right) = \mathop \sum \nolimits_{n = - \infty }^\infty {C_n}{e^{jn{\omega _0}\omega }} \ ..(ii)\)
On Replacing (n) by (-n) in equation (i)
\(X\left( {{e^{j\omega }}} \right) = \mathop \sum \nolimits_{n = - \infty }^\infty x\left( { - n} \right){e^{j\omega n}} \ ..(iii)\)
On comparing equation (ii) and (iii)
Cn = x(-n)
ω0 = 1