Correct Answer - Option 1 : e
y = e
x + x
3/3 + c
Given: \(\frac{{dy}}{{dx}} = {e^{x - y}} + {x^2}{e^{ - y}}\)
\(\frac{{dy}}{{dx}} = {e^x}.{e^{ - y}} + {x^2}{e^{ - y}}\)
\(\frac{{dy}}{{dx}} = {e^{ - y}}\left( {{e^x} + {x^2}} \right)\)
\(\frac{{dy}}{{dx}} = \frac{{{e^x} + {x^2}}}{{ey}}\)
dy.ey = (ex + x2) dx → this is variable separable form taking integration on both side.
\(\smallint {e^y}dy = \smallint {e^x}dx + \smallint {x^2}dx\)
\({e^y} = {e^x} + \frac{{{x^3}}}{3} + c\)
∵ \(\smallint {x^n}dx = \frac{{{x^{n + 1}}}}{{n + 1}}\)
∵ ∫ exdx = ex