Correct Answer - Option 5 : 6.25%
Concept:
Deflection at the center due to central concentrated load on a simply supported beam, \(δ = \frac{{W{L^3}}}{{48EI}}\)
For rectangular beam Moment of inertia, \(I = \frac{{B{D^3}}}{{12}}\)
Calculation:
Given,
width = B and Depth = D
Deflection at centre = δ1
When B´ = 2B and D´ = 2D
E, L remains the same.
Since, \(\delta = \frac{{W{L^3}}}{{48E\left( {\frac{{B{D^3}}}{{12}}} \right)}}\)
\(\delta \propto \frac{1}{{B{D^3}}}\)
\(\frac{{{\delta _1}}}{{{\delta _2}}} = \frac{{B'{{\left( {D'} \right)}^3}}}{{B{D^3}}} = \frac{{\left( {2B} \right){{\left( {2D} \right)}^3}}}{{B{D^3}}} = 16\)
\(\frac{{{\delta _2}}}{{{\delta _1}}} = \frac{1}{{16}}\)
\(\frac{{{\delta _2}}}{{{\delta _1}}} \times 100 = 6.25\% \)
The deflection at the center of the beam w.r.t. the original deflection will be reduced to 6.25 %.