Correct Answer - Option 3 : 7
Concept:
Eccentricity for the ellipse \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) is given by \(e = \sqrt {1 - \frac{{{b^2}}}{{{a^2}}}} \) and foci = (±ae, 0)
Eccentricity for the hyperbola \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) is given by \(e = \sqrt {1 + \frac{{{b^2}}}{{{a^2}}}} \) and foci = (± ae, 0)
Calculation:
\(\frac {x^2}{16} + \frac {y^2}{b^2} = 1\) eccentricity of the ellipse is \(e = \sqrt {1 - \frac{{{b^2}}}{{16}}} \) and x coordinate foci = \(4\sqrt {1 - \frac{{{b^2}}}{{16}}} = \sqrt {16 - {b^2}} \)
Given hyperbola \(\frac {x^2}{144} - \frac {y^2}{81} = \frac 1 {25}\) can be written as \(\frac{{{x^2}}}{{{(12/5)^2}}} - \frac{{{y^2}}}{{{(9/5)^2}}} = 1\) ,
By comparing the given hyperbola with \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), we get a = 12/5, b = 9/5
Eccentricity of the hyperbola
\(e = \sqrt {1 + \frac{{{b^2}}}{{{a^2}}}} ⇒ \sqrt {1 + \frac{{{{(9/5)}^2}}}{{{{(12/5)}^2}}}} ⇒ \sqrt {1 + \frac{{81}}{{144}}} ⇒ \frac{{15}}{{12}}\)
x coordinate foci of hyperbola = ae = \(\frac{{12}}{5} \times \frac{{15}}{{12}} = 3\)
According to question foci of ellipse and hyperbola coincide
So x coordinate of foci of ellipse equal to the x coordinate of foci of hyperbola
\(⇒ \sqrt {16 - {b^2}} = 3\)
⇒ 16 - b2 = 9
⇒ b2 = 7