Correct Answer - Option 3 : 0
\(A = \left[ {\begin{array}{*{20}{c}} 4&2\\ { - 1}&1 \end{array}} \right]\)
(A – 2I)(A – 3I)
= A2 – 3A – 2A + 6I
= A2 – 5A + 6 ---(1)
\(\left| {A - \lambda I} \right| = \left[ {\begin{array}{*{20}{c}} {4 - \lambda }&2\\ { - 1}&{1 - \lambda } \end{array}} \right]\)
(4 - λ)(1 - λ) + 2 = 0
4 – 5λ + λ2 + 2 = 0
λ2 – 5λ + 6 = 0
Now,
Cay ley – Hamilton theorem says that a matrix A satisfies it characteristic equation:
∴ A2 – 5A + 6 = 0