Correct Answer - Option 4 :
\(\frac{2}{\pi }\;{\bar a_r}\mu \;W/{m^2}\)
It is hemisphere, so area = 2πr2
Now transmitted power
PT = Pavg × area
\({P_{avg}} = \frac{{{P_T}}}{{area}} = \frac{{200\;kW}}{{2\pi \left( {50\; \times \;{{10}^3}} \right){m^2}}}\)
= \(\frac{{200\; \times \;{{10}^3}}}{{25\; \times\; 50 \;\times \;50\; \times\; {{10}^6}}}W/{m^2}\)
= \(\frac{{\frac{{2\; \times \;{{10}^5}}}{{2\pi \; \times \;25\; \times \;{{10}^8}}}W}}{{{m^2}}} = \frac{{40}}{\pi }\;\mu \;W/{m^2}\)
Poynting vector will be directed into a direction; So
= \({P_{avg}} = \frac{{40}}{\pi }\;{\bar a_r}\;\;\mu W/{m^2}\)