Correct Answer - Option 2 : The speed remains at 1 pu but armature current becomes 2 pu
Concept:
DC shunt motor
For constant power load P = constant
V1 Ia1 = V2 Ia2 and T1 N1 = T2 N2
V = terminal voltage
T = torque
N = speed of motor
Ia = armature current
If = field current
Calculation:
Given that
The terminal voltage and the field current of the machine are halved
V2 = V1 / 2 and If2 = If1 / 2
1) Armature current
V1 Ia1 = V2 Ia2
\({{\rm{I}}_{{\rm{a}}2}} = \frac{{{{\rm{V}}_1}{{\rm{I}}_{{\rm{a}}1}}}}{{{{\rm{V}}_2}}} = \frac{{{{\rm{V}}_1}{{\rm{I}}_{{\rm{a}}1}}}}{{{{\rm{V}}_1}/2}}\)
Ia2 = 2Ia1 = 2 pu
2) Speed of motor
T1 N1 = T2 N2 {T ∝ ϕ Ia}
\({{\rm{N}}_2} = \frac{{{{\rm{T}}_1}{{\rm{N}}_1}}}{{{{\rm{T}}_2}}} = \frac{{{{\rm{I}}_{{\rm{f}}1}}{{\rm{I}}_{{\rm{a}}1}}{{\rm{N}}_1}}}{{{{\rm{I}}_{{\rm{f}}2}}{{\rm{I}}_{{\rm{a}}2}}}}\)
\({{\rm{N}}_2} = \frac{{{{\rm{I}}_{{\rm{f}}1}}{{\rm{I}}_{{\rm{a}}1}}{{\rm{N}}_1}}}{{\left( {\frac{{{{\rm{I}}_{{\rm{f}}1}}}}{2}} \right)\left( {2{{\rm{I}}_{{\rm{a}}1}}} \right)}} = {{\rm{N}}_1}\)
Speed N2 = 1 pu