Correct Answer - Option 2 : 6 dB
Concept:
The directivity of an antenna is defined as:
\(D = \frac{{{U_{max}}}}{{{U_{avg}}}}\)
Where Uavg is evaluated as:
\({U_{avg}} = \frac{1}{{4\pi }}\mathop \smallint \limits_U\left( {\theta ,\phi } \right) \cdot d{\rm{\Omega }}\)
dΩ is the solid angle.
Calculation:
For the given U(θ, ϕ), the average radiation intensity will be:
\({U_{avg}} = \frac{1}{{4\pi }}\mathop \smallint \limits_{0 = 0}^\pi \mathop \smallint \limits_{\phi = 0}^\pi \left( {2\left( {\sin \theta \sin \phi } \right)} \right)\sin \theta d\theta d\phi \)
\( = \frac{2}{{4\pi }}\mathop \smallint \limits_{0 = 0}^\pi {\sin ^2}\theta d\theta \mathop \smallint \limits_{\phi = 0}^\pi \sin \phi d\phi \)
\( = \frac{1}{{2\pi }}\mathop \smallint \limits_{0 = 0}^\pi \left( {\frac{{1 - \cos 2\theta }}{2}} \right)d\theta \left. {\left( { - \cos \theta } \right)} \right|_0^\pi \)
\( = \frac{1}{{4\pi }}\left. {\left[ {0 - \frac{{\sin 2\theta }}{2}} \right]} \right|_0^\pi \left[ { - \left( {\cos \pi - \left( 0 \right)0} \right)} \right]\)
\( = \frac{1}{{4\pi }}\left[ {\pi - \left( {\left( { - 1 - 1} \right)} \right)} \right] = \frac{1}{{2\pi }} = 0.5\)
Also, the maximum radiation intensity for the given antenna occurs at \(\theta = \frac{\pi }{2}\) and \(\phi = \frac{\pi }{2}\), i.e.
\({U_{max}} = 2\sin \frac{\pi }{2} \cdot \sin \frac{\pi }{2}\)
Umax = 2
∴ The directivity of the antenna will be:
\(D = \frac{{{U_{max}}}}{{{U_{avg}}}} = \frac{2}{{0.5}} = 4\)
In dB, this can be expressed as:
D(dB) = 10 log10 (4)
= 6 dB