Correct Answer - Option 4 : sin
-1(0.82) and 6 r/s
Concept:
The standard T/F of the compensator is
\(\frac{{1 + aTs}}{{1 + Ts}}\)
Maximum phase lead
\( {\phi _m} = {\sin ^{ - 1}}\left( {\frac{{a - 1}}{{a + 1}}} \right)\\ \)
Maximum phase lead frequency,
\({\omega _m} = \frac{1}{{T\sqrt a }}\)
Calculation:
The given transfer function is,
\(T/F = \frac{{1 + 0.5\;s}}{{1 + 0.05\;s}}\)
By comparing both transfer functions,
aT = 0.5
T = 0.05
a = 10
Maximum phase lead
\(\begin{array}{l} {\phi _m} = {\sin ^{ - 1}}\left( {\frac{{a - 1}}{{a + 1}}} \right)\\ = {\sin ^{ - 1}}\left( {\frac{{10 - 1}}{{10 + 1}}} \right)\\ = {\sin ^{ - 1}}\left( {\frac{9}{{11}}} \right) \end{array}\)
= sin-1 (0.82)
Maximum phase lead frequency is:
\({\omega _m} = \frac{1}{{T\sqrt a }}\)
\(= \frac{1}{{0.05\sqrt {10} }}\)
ω
m = 6.66 rad/sec