Correct Answer - Option 1 : 200 kN/mm
2
Concept:
The Young’s modulus of elasticity is the ratio of stress to strain i.e.
\(E = \frac{\sigma }{\epsilon}\)
Wherein,
E = Young’s modulus of elasticity
σ = Stress (Force per unit area)
ϵ = Strain (Ratio of Change in length to original length)
Note that, here we should take actual area of cross-section because on stretching the bar its diameter reduces owing to Poison’s effect. Since Poison’s ratio is not given, we assume actual area is equal to the original given area.
Calculation:
Given,
Force, F = 23.5 kN; diameter, d = 10 mm;
Gauge length (original length), l = 200 mm
Increase in length, Δl = 0.3 mm
\({\rm{Stress}},{\rm{\;\sigma }} = {\rm{\;}}\frac{{23.5\; \times \;1000}}{{\frac{{\rm{\pi }}}{4}\; \times \;{{10}^2}}} = 299.36{\rm{\;MPa}}\)
\({\rm{Strain}},\epsilon {\rm{}} = {\rm{\;}}\frac{{{\rm{\Delta L}}}}{{\rm{L}}} = \frac{{0.3}}{{200}} = 1.5 \times {\rm{\;}}{10^{ - 3}}\)
∴ \(E = \frac{\sigma }{\epsilon} = \frac{{299.36}}{{1.5\; \times {\rm{\;}}{{10}^{ - 3}}}}\) = 199.6 × 103 MPa
⇒ E ≈ 200 kN/mm2