Correct Answer - Option 2 : 6, 4 Ω, 7 mho and 2
ABCD Parameters:
It relates the variables at the input port to those at the output port.
\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right]\)
V1 = AV2 - BI2
I1 = CV2 - DI2
With output open-circuited, i.e. I2 = 0, the two parameters we get are:
\(A = {\left. {\frac{{{V_1}}}{{{V_2}}}} \right|_{{I_2} = 0}}\)
\({\left. {C = \frac{{{I_1}}}{{{V_2}}}} \right|_{{I_2} = 0}}\)
With the input short-circuited, i.e. V1 = 0, the two parameters we get are:
\({\left. {B = - \frac{{{V_1}}}{{{I_2}}}} \right|_{{V_2} = 0}}\)
\({\left. {D = \frac{{{I_1}}}{{{I_2}}}} \right|_{{V_i} = 0}}\)
Calculation:
Given:
V1 = 6 V2 – 4 I2
I1 = 7 V2 – 2 I2
Comparing this with the standard equations of two-port networks, we get:
A = 6, B = 4 Ω, C = 7 mho, and D = 2