Correct Answer - Option 1 : 66%
Concept:
To find the percentage of water vapor that condenses into water, \(\frac{{{\omega _1} - {\omega _2}}}{{{\omega _1}}} \times 100\)
We know that specific humidity ω = \(\frac{{0.622{p_v}}}{{{p_t} - {p_v}}}\) [where pt = total pressure of dry air and water vapor, pv = partial pressure of water vapor]
Calculation:
GIven:
At 21℃ ⇒ Pv = 0.025 bar, P = 1 bar
At 5℃ ⇒ Pv = 0.0087 bar, P = 1 bar
Specific humidity at 21℃
ω1 = \(\frac{{0.622 \times 0.025}}{{1 - 0.025}}\)
And Specific humidity at 5℃
ω2 = \(\frac{{0.622 \times 0.0087}}{{1 - 0.0087}}\)
So the percentage of water vapour that condenses into water-
= \(\frac{{{\omega _1} - {\omega _2}}}{{{\omega _1}}} \times 100\) = \(\frac{{\frac{{0.025}}{{1 - 0.025}} - \frac{{0.0087}}{{1 - 0.0087}}}}{{\frac{{0.025}}{{1 - 0.025}}}} \times 100\) ≈ 66%