Concept:
Let f(x) be any probability density function where ‘x’ is random variable.
The probability that x lies between x1 and x2 is given by,
\(P\left( {{x_1} \le x \le {x_2}} \right) = \mathop \smallint \limits_{{x_1}}^{{x_2}} f\left( x \right)dx\)
In this case, x is evaporation and probability density f (x).
\(f\left( E \right) = \left\{ {\begin{array}{*{20}{c}}
{\frac{1}{2}\;0 \le E \le 5\;mm/day}\\
{0\;;\;otherwise}
\end{array}} \right.\)
Calculation:
The probability E lies between 2 and 4 mm/day is P(2 ≤ E ≤ 4)
\(P\left( {2 \le E \le 4} \right) = \mathop \smallint \limits_2^4 f\left( E \right)dE = \;\mathop \smallint \limits_2^4 \left( {\frac{1}{5}} \right)dE = \left. {\frac{1}{5}} \right|_2^4 = \frac{2}{5} = 0.4\)