Correct Answer - Option 2 : 781.25 m
Concept:
Length of summit curve is given by,
If we assume L > OSD
\({\rm{L}} = \frac{{{\rm{N}}{{\rm{S}}^2}}}{{2{{\left[ {\sqrt {{{\rm{h}}_1}} + \sqrt {{{\rm{h}}_2}} } \right]}^2}}}\)
If we assume L < OSD
\({\rm{L}} = 2{\rm{S}} - \frac{{2{{\left[ {\sqrt {{{\rm{h}}_1}} + \sqrt {{{\rm{h}}_2}} } \right]}^2}}}{{\rm{N}}}\)
Where, N = Deviation angle & S = Stoping distance
Calculation:
Given: Upward gradient = 1 in 100, Downward gradient = 1 in 50, Stopping sight distance = 500 m, and \({\rm{N}} = \frac{1}{{100}} - \left( { - \frac{1}{{50}}} \right) = 0.03\)
For overturning sight distance, h1 = 1.2 m & h2 = 1.2 m
Case 1: If L > OSD
\({\rm{L}} = \frac{{0.03 \times {{500}^2}}}{{2{{\left[ {\sqrt {1.2} + \sqrt {1.2} } \right]}^2}}} = 781.25{\rm{\;m}}\)
Case 2: If L < OSD
\({\rm{L}} = 2 \times 500 - \frac{{2{{\left[ {\sqrt {1.2} + \sqrt {1.2} } \right]}^2}}}{{0.03}} = 680{\rm{\;m}}\)
Thus the assumption is not correct.
∴ Length of summit curve is
781.25 m.