Correct Answer - Option 2 :
\(\frac{k}{{k - 1}}\frac{{{p_1}}}{{{w_1}}} + \frac{{v_1^2}}{{2g}} + {z_1} = \frac{k}{{k - 1}}\frac{{{p_2}}}{{{w_2}}} + \frac{{v_2^2}}{{2g}} + {z_2}\)
For compressible fluid, density of fluid (f) is not constant.
The General Bernoulli equation is:
\(\smallint \frac{{dp}}{\rho } + \smallint Vdv + \smallint gdz = constant\;\left( c \right)\)
\(\smallint Vdv = \frac{{{V^2}}}{2}\)
\(\smallint gdz = qz\)
For adiabatic conditions:
We know that, \(\frac{P}{{{\rho ^k}}} = C\)
\(\frac{{{P^{\frac{1}{K}}}}}{{{C^{\frac{1}{K}}}}} = \rho\)
Now put value of ρ, \(\smallint \frac{{dP}}{\rho } = \smallint \frac{{dp}}{{{P^{\frac{1}{k}}}}}\;{C^{\frac{1}{k}}} = \smallint {P^{ - \frac{1}{k}}}\;{C^{\frac{1}{k}}}\;dP = \left( {\frac{{{P^{ - \frac{1}{k} + 1}}}}{{ - \frac{1}{k} + 1}}} \right){C^{\frac{1}{k}}} = \left( {\frac{k}{{k - 1}}} \right)\frac{p}{\rho }\)
i.e. \(\smallint \frac{{dp}}{\rho } = \left( {\frac{k}{{k - 1}}} \right)\left( {\frac{p}{\rho }} \right)\)
∴ Bernoulli’s equation is
\(\left( {\frac{k}{{k - 1}}} \right)\left( {\frac{p}{{\rho g}}} \right) + \frac{{{V^2}}}{2} + gz = C\)
\(\left( {\frac{k}{{k - 1}}} \right)\frac{p}{{\rho g}} + \frac{{{V^2}}}{{2g}} + z = C\)