Correct Answer - Option 1 :
\(\frac{u}{{\mathop u\nolimits^2 + \mathop v\nolimits^2 }}\)
Concept:
\(\frac{{\partial H}}{{\partial v}} = \frac{{\partial H}}{{\partial t}} \times \frac{{\partial t}}{{\partial v}}\)
Calculation:
Given:
\(\begin{array}{l} H = {\tan ^{ - 1}}\frac{x}{y}\\ \end{array}\)
x = u + v
y = u - v
substituting values of x and y in H, we get
\(H = {\tan ^{ - 1}}\left[ {\frac{{u + v}}{{u - v}}} \right]\)
let \(t = \frac{{u + v}}{{u - v}}\)------------(1)
\(H = {\tan ^{ - 1}}t\)
differentiating w.r.t 't'
\(\begin{array}{l} \frac{{\partial H}}{{\partial t}} = \frac{1}{{1 + \mathop t\nolimits^2 }}\\ \end{array}\)------------(2)
In equation (1), differentiate 't' w.r.t v
\(\frac{{\partial t}}{{\partial v}} = \frac{{(u - v)(1) - (u + v)(-1)}}{{\mathop {\left( {u - v} \right)}\nolimits^2 }}={\frac{{2u}}{{\mathop {\left( {u - v} \right)}\nolimits^2 }}} \)---------(3)
Multiplying (2) and (3), we get
\( \frac{{\partial H}}{{\partial v}} = \frac{1}{{1 + \mathop t\nolimits^2 }}\left[ {\frac{{2u}}{{\mathop {\left( {u - v} \right)}\nolimits^2 }}} \right]\\ \\\)
By substituting '\(t = \frac{{u + v}}{{u - v}}\)' we get
\(\frac{{\partial H}}{{\partial v}} = \frac{u}{{\mathop u\nolimits^2 + \mathop v\nolimits^2 }}\\ \\ \)