Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
103 views
in Calculus by (95.2k points)
closed by
If \(\begin{array}{l} H = {\tan ^{ - 1}}\frac{x}{y}\\ \end{array}\), x = u + v, y = u - v then \(\begin{array}{l} \frac{{\partial H}}{{\partial V}}\\ \end{array}\)is 
1. \(\frac{u}{{\mathop u\nolimits^2 + \mathop v\nolimits^2 }}\)
2. \(\frac{{ - v}}{{\mathop u\nolimits^2 + \mathop v\nolimits^2 }}\)
3. \(\frac{u}{{\mathop x\nolimits^2 + \mathop y\nolimits^2 }}\)
4. \(\frac{{ - 2v}}{{\mathop x\nolimits^2 + \mathop y\nolimits^2 }}\)

1 Answer

0 votes
by (95.4k points)
selected by
 
Best answer
Correct Answer - Option 1 : \(\frac{u}{{\mathop u\nolimits^2 + \mathop v\nolimits^2 }}\)

Concept:

\(\frac{{\partial H}}{{\partial v}} = \frac{{\partial H}}{{\partial t}} \times \frac{{\partial t}}{{\partial v}}\)

Calculation:

Given: 

\(\begin{array}{l} H = {\tan ^{ - 1}}\frac{x}{y}\\ \end{array}\)

x = u + v

y = u - v

substituting values of x and y in H, we get
\(H = {\tan ^{ - 1}}\left[ {\frac{{u + v}}{{u - v}}} \right]\)

let \(t = \frac{{u + v}}{{u - v}}\)------------(1)

\(H = {\tan ^{ - 1}}t\)

differentiating w.r.t 't'

\(\begin{array}{l} \frac{{\partial H}}{{\partial t}} = \frac{1}{{1 + \mathop t\nolimits^2 }}\\ \end{array}\)------------(2)

In equation (1), differentiate 't' w.r.t v

\(\frac{{\partial t}}{{\partial v}} = \frac{{(u - v)(1) - (u + v)(-1)}}{{\mathop {\left( {u - v} \right)}\nolimits^2 }}={\frac{{2u}}{{\mathop {\left( {u - v} \right)}\nolimits^2 }}} \)---------(3)

Multiplying (2) and (3), we get

\( \frac{{\partial H}}{{\partial v}} = \frac{1}{{1 + \mathop t\nolimits^2 }}\left[ {\frac{{2u}}{{\mathop {\left( {u - v} \right)}\nolimits^2 }}} \right]\\ \\\)

By substituting '\(t = \frac{{u + v}}{{u - v}}\)' we get

\(\frac{{\partial H}}{{\partial v}} = \frac{u}{{\mathop u\nolimits^2 + \mathop v\nolimits^2 }}\\ \\ \)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...