Correct Answer - Option 2 :
\(\frac{1}{{\sqrt 3 }}\)
Let’s consider the given vectors as,
\({\rm{\vec a}} = \hat i + \lambda \hat j + \hat k\)
\({\rm{\vec b}} = \hat j + \lambda \hat k\)
\(\overrightarrow {\rm{c}} = \lambda \hat i + {\rm{\hat k}}\)
The volume of the parallelepiped is given by the formula:
\(V = \left| {\vec a\vec b\vec c} \right|\)
Now,
\(\Rightarrow V = \left| {\begin{array}{*{20}{c}}
1&\lambda &1\\
0&1&\lambda \\
\lambda &0&1
\end{array}} \right|\)
⇒ V = 1(1 – 0) – λ(0 – λ2) + 1(0 – λ)
⇒ V = 1 + λ3 – λ ----(1)
Now, we need to find the minimum value of the volume of the parallelepiped.
So, we need to differentiate the volume.
\(\Rightarrow \frac{{dV}}{{d\lambda }} = 3{\lambda ^2} - 1 = 0\)
⇒ 3λ2 = 1
\(\Rightarrow {\lambda ^2} = \frac{1}{3}\)
\(\therefore \lambda = \pm \frac{1}{{\sqrt 3 }}\)
On substituting the value of λ in equation (1), we can get that the value of volume of the parallelepiped is minimum when the value of λ is
\(+ \frac{1}{{\sqrt 3 }}\).