Correct Answer - Option 1 : 0.4736 V
Calculation:
According to Nernst equation,
\({E_{{\rm{cell\;}}}} = {\rm{E}}{^\circ _{cell}} - \frac{{2.303RT}}{{nF}}{\rm{log\;}}Q\)
Given, \(\frac{{2.303RT}}{F} = 0.059{\rm{\;V}}\)
\(\therefore {E_{{\rm{cell}}}} = {\rm{E}}{^\circ _{cell}} - \frac{{0.059}}{n}{\rm{log\;}}Q\)
At equilibrium, Ecell = 0
\({\rm{E}}{^\circ _{cell}} = \frac{{0.059}}{n}{\rm{log\;}}{K_C}\)
For the given reaction, n = 2
Also,
KC = 10 × 1015
\(\therefore {\rm{E}}{^\circ _{cell}} = \frac{{0.059}}{2}{\rm{log}}\left( {10 \times {{10}^{15}}} \right)\)
= 0.472 V = 0.473 V