Correct Answer - Option 3 :
\(\frac{1}{2}R\Delta T\)
Concept:
The polytropic process can describe gas expansion and compression which include heat transfer. The exponent n is known as the polytropic index and it may take on any value from 0 to ∞, depending on the particular process.
\(\Delta W = \frac{{{p_2}{V_2} - {p_1}{V_1}}}{{1 - x}}\left( {{\rm{\;for\;}}x \ne 0} \right)\)
Calculation:
Given, VT = k, (k is constant)
\({\rm{or\;T}} \propto \frac{1}{{\rm{V}}}\;\) ----(1)
Using ideal gas equation,
pV = nRT
pV ∝ T
\( \Rightarrow {\rm{pV}} \propto \frac{1}{{\rm{V}}}\)
or pV2 = constant ----(2)
i.e. a polytropic process with x = 2
(Polytropic process means, pVx = constant)
We know that, work done in a polytropic process is given by
\(\Delta W = \frac{{{p_2}{V_2} - {p_1}{V_1}}}{{1 - x}}\left( {{\rm{\;for\;}}x \ne 0} \right)\) ----(3)
\({\rm{and,\;\Delta W}} = {\rm{pV\;in\;}}\left( {\frac{{{{\rm{V}}_2}}}{{{{\rm{V}}_1}}}} \right)\left( {{\rm{\;for\;x}} = 1} \right)\)
Here, x = 2
\(\therefore {\rm{\Delta W}} = \frac{{{{\rm{p}}_2}{{\rm{V}}_2} - {{\rm{p}}_1}{{\rm{V}}_1}}}{{1 - {\rm{x}}}} = \frac{{{\rm{nR}}\left( {{{\rm{T}}_2} - {{\rm{T}}_1}} \right)}}{{1 - {\rm{x}}}}\)
\(\Rightarrow {\rm{\Delta W}} = \frac{{{\rm{nR\Delta T}}}}{{1 - 2}} = - {\rm{nR\Delta T}}\) ----(4)
Now, for monoatomic gas change in internal energy is given by
\({\rm{\Delta U}} = \frac{3}{2}{\rm{R\Delta T}}\) ----(5)
Using first law of thermodynamics, heat absorbed by one mole gas is
∆Q = ∆W + ∆U
\(= \frac{3}{2}{\rm{R\Delta T}} - {\rm{R\Delta T}}\)
\(\Rightarrow {\rm{\Delta Q}} = \frac{1}{2}{\rm{R\Delta T}}\)