Correct Answer - Option 4 : 3
Given f(1) = 2 and f(x + y) = f(x)·f(y)
at x = 1,y =1⇒ f(2) = f(1)·f(1) = 22
x = 2, y =1 ⇒ f(3) = f(2)·f(1) = 23
…… f(n) = 2n
Now \(\mathop \sum \limits_{{\rm{k}} = 1}^{10} {\rm{f}}\left( {{\rm{a}} + {\rm{k}}} \right) = 16\left( {{2^{10}} - 1} \right)\)
⇒ f(a+1) + f(a+2) + … + f(a+10) =16(210- 1)
⇒ 2a+1 + 2a+2 + … + 2a+10 = 16(210 – 1)
⇒ 2a [21 + 22 + … + 210] = 16(210 – 1)
\(\Rightarrow {2^a}\left[ {\frac{{2\left( {{2^{10}} - 1} \right)}}{{2 - 1}}} \right] = 16\left( {{2^{10}} - 1} \right)\)
⇒ 2a+1 = 16
⇒ 2a+1 = 24
⇒ a + 1 = 4
⇒ a = 3
Therefore, the natural number 'a' is 3.