Correct Answer - Option 3 :
\(\frac{{3{\rm{F}}}}{{\left( {{\rm{\pi }}{{\rm{r}}^2}{\rm{YT}}} \right)}}\)
Concept:
Given, length of the uniform cylindrical rod = L
Radius of the uniform cylindrical rod = R
Young’s modulus of the uniform cylindrical rod = Y
Uniform rod heated to the temperature = T
Longitudinal compressive force acting on the rod = F
From question, we need to find the coefficient of volumetric expansion.
The volumetric expansion is:
αV = 3αL
The linear expansion is given by the formula:
\(\frac{{{\rm{\Delta L}}}}{{\rm{L}}} = {{\rm{\alpha }}_{\rm{L}}}{\rm{\Delta T}}\)
\({{\rm{\alpha }}_{\rm{L}}} = \frac{{{\rm{\Delta L}}}}{{{\rm{L}}\left( {{\rm{\Delta T}}} \right)}}\)
The young modulus is given by the formula:
\({\rm{Y}} = \frac{{{\rm{Stress}}}}{{{\rm{Strain}}}}\)
Now, the stress (force per unit area applied to the material) is:
\({\rm{Stress}} = \frac{{\rm{F}}}{{\rm{A}}}\)
Where,
A = Area of the rod = πr2
\(\therefore {\rm{Stress}} = \frac{{\rm{F}}}{{{\rm{\pi }}{{\rm{r}}^2}}}\)
Now, the strain (ratio of change in length to original length) is:
\({\rm{Strain}} = \frac{{{\rm{\Delta L}}}}{{\rm{L}}}\)
Calculation:
On substituting stress and strain in young’s modulus,
\( \Rightarrow {\rm{Y}} = \frac{{\left( {\frac{{\rm{F}}}{{{\rm{\pi }}{{\rm{r}}^2}}}} \right)}}{{\left( {\frac{{{\rm{\Delta L}}}}{{\rm{L}}}} \right)}}\)
\( \Rightarrow {\rm{Y}} = \frac{{\rm{F}}}{{{\rm{\pi }}{{\rm{r}}^2}}} \times \frac{{\rm{L}}}{{{\rm{\Delta L}}}}\)
\( \Rightarrow \frac{{\rm{L}}}{{{\rm{\Delta L}}}} = \frac{{{\rm{Y}}\left( {{\rm{\pi }}{{\rm{r}}^2}} \right)}}{{\rm{F}}}\)
\( \Rightarrow \frac{{{\rm{\Delta L}}}}{{\rm{L}}} = \frac{{\rm{F}}}{{{\rm{Y}}\left( {{\rm{\pi }}{{\rm{r}}^2}} \right)}}\)
Now, substituting above equation in linear expansion,
\( \Rightarrow {{\rm{\alpha }}_{\rm{L}}} = \frac{{\rm{F}}}{{\left( {{\rm{Y}}\left( {{\rm{\pi }}{{\rm{r}}^2}} \right)} \right){\rm{\Delta T}}}}\)
\(\therefore {{\rm{\alpha }}_{\rm{L}}} = \frac{{\rm{F}}}{{{\rm{\pi }}{{\rm{r}}^2}{\rm{Y\Delta T}}}}\)
Now, substituting linear expansion in volumetric expansion,
\( \Rightarrow {{\rm{\alpha }}_{\rm{V}}} = 3\left( {\frac{{\rm{F}}}{{{\rm{\pi }}{{\rm{r}}^2}{\rm{Y\Delta T}}}}} \right)\)
\(\therefore {{\rm{\alpha }}_{\rm{V}}} = \frac{{3{\rm{F}}}}{{{\rm{\pi }}{{\rm{r}}^2}{\rm{Y\Delta T}}}} = \frac{{3{\rm{F}}}}{{{\rm{\pi }}{{\rm{r}}^2}{\rm{YT}}}}\)