Correct Answer - Option 2 :
\({\rm{S}} = {\left( {\frac{{{{\rm{K}}_{{\rm{sp}}}}}}{{6912}}} \right)^{1/7}}\)
Concept:
The oxidation of Zr3(PO4)4is given as:
\({\rm{Z}}{{\rm{r}}_3}{\left( {{\rm{P}}{{\rm{O}}_4}} \right)_4}⇌3{\rm{Z}}{{\rm{r}}^{4 + }} + 4{\rm{PO}}_4^{3 - }\)
3S 4S
The solubility of Zr3(PO4)4
\({{\rm{K}}_{{\rm{sp}}}} = {\left[ {3{\rm{Z}}{{\rm{r}}^{4 + }}} \right]^3}{\left[ {4{\rm{PO}}_4^{3 - }} \right]^4}\)
Calculation:
⇒ Ksp = [3S]3 [4S]4
⇒ Ksp = 27S3 × 256S4
⇒ Ksp = 6912S7
\(\Rightarrow {{\rm{S}}^7} = \frac{{{{\rm{K}}_{{\rm{sp}}}}}}{{6912}}\)
\(\therefore {\rm{S}} = {\left( {\frac{{{{\rm{K}}_{{\rm{sp}}}}}}{{6912}}} \right)^{1/7}}\)