Correct Answer - Option 1 : 0.03050 kg mol
-1
Concept:
General expression for density of unit cell:
Unit Cell:
The smallest group of atoms which has the overall symmetry of a crystal, and from which the entire lattice can be built up by repetition in three dimensions is termed as Unit Cell.
The density of unit cell is given by the following
\({\rm{Density\;of\;unit\;cell}} = \frac{{{\rm{mass\;of\;unit\;cell}}}}{{{\rm{volume\;ofunit\;cell}}}}\)
\({\rm{Density\;of\;unit\;cell}} = \frac{{\rm{m}}}{{\rm{V}}} = {\rm{z\times}}\frac{{\rm{m}}}{{{{\rm{a}}^3}}}\)
\(d = \frac{{M \times Z}}{{{N_A} \times {a^3}\;}} \Rightarrow M = \frac{{d \times {N_A} \times {a^3}}}{Z}\;\)
Where
M = molar mass
Calculation:
Density of a crystal
\(d = \frac{{M \times Z}}{{{N_A} \times {a^3}\;}} \Rightarrow M = \frac{{d \times {N_A} \times {a^3}}}{Z}\;\)
Given, d = 9 × 103 kg m-3
M = Molar mass of the solid
Z = 4 (for fcc crystal)
NA = Avogadro's constant = 6 × 1023 mol-1
a = Edge length of the unit cell
\(= 200\sqrt 2 {\rm{\;pm}} = 200\sqrt 2 \times {10^{ - 12}}{\rm{\;m}}\)
On substituting all the given values, we get
= (9 × 103) kg m-3 × (6 × 1023) mol-1
\(= \frac{{{{\left( {200\sqrt 2 \times {{10}^{ - 12}}} \right)}^3}{m^3}}}{4}\)
= 0.0305 kg mol
-1