Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
21.5k views
in Chemistry by (96.6k points)
closed by

Consider the reaction,

N2 (g) + 3H2 (g) ⇌ 2NH3 (g)

The equilibrium constant of the above reaction is Kp. If pure ammonia is left to dissociate, the partial pressure of ammonia at equilibrium is given by (Assume that \(\;{p_{N{H_3}}} < < {p_{total}}\) at equilibrium).


1. \(\frac{{{3^{3/2}}K_p^{1/2}{P^2}}}{4}\)
2. \(\frac{{{3^{3/2}}K_p^{1/2}{P^2}}}{{16}}\)
3. \(\frac{{K_p^{1/2}{P^2}}}{{16}}\)
4. \(\frac{{K_p^{1/2}{P^2}}}{4}\)

1 Answer

+1 vote
by (85.8k points)
selected by
 
Best answer
Correct Answer - Option 2 : \(\frac{{{3^{3/2}}K_p^{1/2}{P^2}}}{{16}}\)

Concept:

N2 (g) + 3H2 (g) ⇌ 2NH3 (g)

\({\rm{At\;}}:{\rm{\;}}{p_{{{\rm{N}}_2}}} = P,\;{P_{{{\rm{H}}_2}}} = 3P,\;{p_{{\rm{N}}{{\rm{H}}_3}}} = 2P\)

\( \Rightarrow {\rm{\;}}{p_{\left( {{\rm{total}}} \right){\rm{\;}})}} = {p_{{{\rm{N}}_2}}} + {p_{{{\rm{H}}_2}}} + {p_{{\rm{N}}{{\rm{M}}_3}}} \simeq {p_{{{\rm{N}}_2}}} + {p_{{{\rm{H}}_2}}}\;\left[\because {{P_{\left( {{\rm{total}}} \right){\rm{\;}}}} > > {p_{{\rm{N}}{{\rm{H}}_3}}}} \right]\)

= p + 3p = 4p

Now, \({K_p} = \frac{{p_{N{H_3}}^2}}{{{p_{{N_2}}} \times p_{{H_2}}^3}} = \frac{{p_{{N_{N{H_3}}}}^2}}{{p \times {{(3p)}^3}}}\)

\(= \frac{{p_{N{H_3}}^2}}{{27 \times {p^4}}} = \frac{{p{{_{N{\rm{H}}}^2}_3}}}{{27 \times {{\left( {\frac{P}{4}} \right)}^4}}}{\rm{\;}}\left[\because {P = 4p} \right]\)

\({K_\rho } = \frac{{p_{N{H_3}}^2 \times {4^4}}}{{{3^2} \times 3 \times {P^4}}}\)

\(\Rightarrow p_{N{H_3}}^2 = \frac{{{3^2} \times 3 \times {P^4} \times {K_p}}}{{{4^4}}}\)

\( \Rightarrow {p_{N{H_3}}} = \frac{{3 \times {3^{1/2}} \times {P^2} \times K_P^{1/2}}}{{{4^2}}}\)

\(= \frac{{{3^{3/2}} \times {P^2} \times K_P^{1/2}}}{{16}}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...