Correct Answer - Option 2 : Infinitely many
From question, the numbers given is:
\(\left| {\begin{array}{*{20}{c}}
{{\rm{lo}}{{\rm{g}}_e}a_1^ra_2^k}&{{\rm{lo}}{{\rm{g}}_e}a_2^ra_3^k}&{{\rm{lo}}{{\rm{g}}_e}a_3^ra_4^k}\\
{{\rm{lo}}{{\rm{g}}_e}a_4^ra_5^k}&{{\rm{lo}}{{\rm{g}}_e}a_5^\pi a_6^k}&{{\rm{lo}}{{\rm{g}}_e}a_6^ra_7^k}\\
{{\rm{lo}}{{\rm{g}}_e}a_7^ra_8^k}&{{\rm{lo}}{{\rm{g}}_e}a_8^\pi a_9^k}&{{\rm{lo}}{{\rm{g}}_e}a_9^ra_{10}^k}
\end{array}} \right| = 0\)
On applying, C2 → C2 - C1 and C3 → C3 - C1,
\(\Rightarrow \left| {\begin{array}{*{20}{c}}
{{\rm{lo}}{{\rm{g}}_e}a_1^ra_2^k}&{{\rm{lo}}{{\rm{g}}_e}a_2^ra_3^k - {\rm{lo}}{{\rm{g}}_e}a_1^ra_2^k}&{{\rm{lo}}{{\rm{g}}_e}a_3^ra_4^k - {\rm{lo}}{{\rm{g}}_e}a_1^ra_2^k}\\
{{\rm{lo}}{{\rm{g}}_e}a_4^ra_5^k}&{{\rm{lo}}{{\rm{g}}_e}a_5^ra_6^k - {\rm{lo}}{{\rm{g}}_e}a_4^ra_5^k}&{{\rm{lo}}{{\rm{g}}_e}a_6^ra_7^k - {\rm{lo}}{{\rm{g}}_e}a_4^ra_5^k}\\
{{\rm{lo}}{{\rm{g}}_e}a_7^ra_8^k}&{{\rm{lo}}{{\rm{g}}_e}a_8^ra_9^k - {\rm{lo}}{{\rm{g}}_e}a_7^ra_8^k}&{{\rm{lo}}{{\rm{g}}_e}a_9^ra_{10}^k - {\rm{lo}}{{\rm{g}}_e}a_7^ra_8^k}
\end{array}} \right| = 0\)
\(\because \left[ {{\rm{lo}}{{\rm{g}}_e}m - {\rm{lo}}{{\rm{g}}_e}n = {\rm{lo}}{{\rm{g}}_e}\left( {\frac{m}{n}} \right)} \right]\)
\(\Rightarrow \left| {\begin{array}{*{20}{c}}
{{\rm{lo}}{{\rm{g}}_e}a_1^ra_2^k}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{a_2^ra_3^k}}{{a_1^ra_2^k}}} \right)}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{a_3^ra_4^k}}{{a_1^ra_2^k}}} \right)}\\
{{\rm{lo}}{{\rm{g}}_e}a_4^ra_5^k}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{a_5^ra_6^k}}{{a_4^ra_5^k}}} \right)}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{a_6^ra_7^k}}{{a_4^ra_5^k}}} \right)}\\
{{\rm{lo}}{{\rm{g}}_e}a_7^ra_8^k}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{a_8^ra_9^k}}{{a_7^ra_8^k}}} \right)}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{a_9^ra_{10}^k}}{{a_7^ra_8^k}}} \right)}
\end{array}} \right| = 0\)
a1, a2, a3,……,a10 are in GP, therefore, we can put, a1 = a; a2 = aR; a3 = aR2; …. a10 = aR9
\(\Rightarrow \left| {\begin{array}{*{20}{c}}
{{\rm{lo}}{{\rm{g}}_e}{a^{r + k}}{R^k}}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{{a^{r + k}}{R^{r + 2k}}}}{{{a^{r + k}}{R^k}}}} \right)}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{{a^{r + k}}{R^{2r + 3k}}}}{{{a^{r + k}}{R^k}}}} \right)}\\
{{\rm{lo}}{{\rm{g}}_e}{a^{r + k}}{R^{3r + 4k}}}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{{a^{r + k}}{R^{4r + 5k}}}}{{{a^{r + k}}{R^{3r + 4k}}}}} \right)}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{{a^{r + k}}{R^{5r + 6k}}}}{{{a^{r + k}}{R^{3r + 4k}}}}} \right)}\\
{{\rm{lo}}{{\rm{g}}_e}{a^{r + k}}{R^{6r + 7k}}}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{{a^{r + k}}{R^{7r + 8k}}}}{{{a^{r + k}}{R^{6r + 7k}}}}} \right)}&{{\rm{lo}}{{\rm{g}}_e}\left( {\frac{{{a^{r + k}}{R^{8r + 9k}}}}{{{a^{r + k}}{R^{6r + 7k}}}}} \right)}
\end{array}} \right| = 0\)
\(\Rightarrow \left| {\begin{array}{*{20}{c}}
{{\rm{lo}}{{\rm{g}}_e}\left( {{a^{r + k}}{R^k}} \right)}&{{\rm{lo}}{{\rm{g}}_e}{R^{r + k}}}&{{\rm{lo}}{{\rm{g}}_e}{R^{2r + 2k}}}\\
{{\rm{lo}}{{\rm{g}}_e}{a^{r + k}}{R^{3r + 4k}}}&{{\rm{lo}}{{\rm{g}}_e}{R^{r + k}}}&{{\rm{lo}}{{\rm{g}}_e}{R^{2r + 2k}}}\\
{{\rm{lo}}{{\rm{g}}_e}{a^{r + k}}{R^{6r + 7k}}}&{{\rm{lo}}{{\rm{g}}_e}{R^{r + k}}}&{{\rm{lo}}{{\rm{g}}_e}{R^{2r + 2k}}}
\end{array}} \right| = 0\)
\(\because \left[ {\begin{array}{*{20}{c}}
{{\rm{log}}{m^n} = n{\rm{log}}m}\\
{{\rm{lo}}{{\rm{g}}_e}{R^{2r + 2k}} = {\rm{lo}}{{\rm{g}}_e}{R^{2\left( {r + k} \right)}} = 2{\rm{lo}}{{\rm{g}}_e}{R^{r + k}}}
\end{array}} \right]\)
\(\Rightarrow \left| {\begin{array}{*{20}{c}}
{{\rm{lo}}{{\rm{g}}_e}\left( {{a^{r + k}}{R^k}} \right)}&{{\rm{lo}}{{\rm{g}}_e}{R^{r + k}}}&{2{\rm{lo}}{{\rm{g}}_e}{R^{r + k}}}\\
{{\rm{lo}}{{\rm{g}}_e}\left( {{a^{r + k}}{R^{3r + 4k}}} \right)}&{{\rm{lo}}{{\rm{g}}_e}{R^{r + k}}}&{2{\rm{lo}}{{\rm{g}}_e}{R^{r + k}}}\\
{{\rm{lo}}{{\rm{g}}_e}\left( {{a^{r + k}}{R^{6r + 7k}}} \right)}&{{\rm{lo}}{{\rm{g}}_e}{R^{r + k}}}&{2{\rm{lo}}{{\rm{g}}_e}{R^{r + k}}}
\end{array}} \right| = 0\)
Now, column C2 and C3 are proportional.
So, value of determinant will be zero for any value of (r, k), r, k ∈ N.
Thus, Set ‘S’ has infinitely many elements.