Correct Answer - Option 4 : 24
Binomial expression is an algebraic expression consisting of two different terms. “Different terms” here means either the two terms should have different variables or the different powers on its variable.
We have to find the sum of the coefficient of even parts.
On expanding the equation,
\({\left( {{\rm{x}} + \sqrt {{{\rm{x}}^3} - 1} } \right)^6} - {\left( {{\rm{x}} + \sqrt {{{\rm{x}}^3} - 1} } \right)^6}\)
\(\Rightarrow ({{\rm{\;}}^6}{{\rm{C}}_0}\cdot{{\rm{x}}^6} + {{\rm{\;}}^6}{{\rm{C}}_1}\cdot{{\rm{x}}^5}\sqrt {{{\rm{x}}^3} - 1{\rm{\;}}} \ldots ) + ({{\rm{\;}}^6}{{\rm{C}}_0}\cdot{{\rm{x}}^6} - {{\rm{\;}}^6}{{\rm{C}}_1}\cdot{{\rm{x}}^5}\sqrt {{{\rm{x}}^3} - 1{\rm{\;}}} \ldots )\)
After cancelling the odd terms, the only term that will remain is:
2(6C0 x6 + 6C2 x4(x3 – 1) + 6C4 x2(x3 – 1)2 + 6C6 (x3 – 1)3) ----(1)
Now, we have to pick the even powers of x
We know that, (x3 – 1)2 = x6 – 2x3 + 1
Equation (1) becomes,
x = 2(6C0 x6 – 6C2 x4 + 6C4 x8 + 6C2 x2 + 6C6 (-1 – 3x6)
= 2(6C0 x6 - 6C2 x4 + 6C4 x8 + 6C2 x2 – 6C6 – 3 6C6 x6
When we drop the x terms and add the coefficient,
2(1 – 6C2 + 6C4 + 6C 4 – 1 – 3)
= 2(1 – 15 + 15 + 15 – 1 – 3)
= 2(1 + 15 – 4)
= 2(12) = 24