Correct Answer - Option 2 : (1, 1, 3)
The normal to the parabola y2 = 4ax in terms of slope is given by the equation:
y = mx – 2am - am3
Now, normal to parabola y2 = 4b(x – c) is given as:
⇒ y = m(x – c) – 2bm – bm3
∴ y = mx – (2b + c)m – bm3
Now, normal to parabola y2 = 8ax is given as:
∴ y = mx – 4am – 2am3
For common normal, it is given as:
⇒ mx – 4am – 2am3 = mx – (2b + c)m – bm3
⇒ 4am + 2am3 = (2b + c)m + bm3
⇒ (2a – b)m3 + (4a – 2b – c)m = 0
⇒ m((2a – b)m2 + (4a – 2b – c)) = 0
∴ m = 0
If m = 0, then all options satisfy because y = 0 is a common normal.
Or
\(\Rightarrow {m^2} = \frac{{2b + c - 4a}}{{2a - b}}\)
\(\Rightarrow {m^2} = \frac{{c - 2\left( {2a - b} \right)}}{{2a - b}}\)
\(\Rightarrow {m^2} = \frac{{\left( {2a - b} \right)\left[ {\frac{c}{{\left( {2a - b} \right)}} - 2} \right]}}{{2a - b}}\)
\(\Rightarrow {m^2} = \frac{c}{{2a - b}} - 2\)
As m2 > 0, then,
\(\Rightarrow \frac{c}{{2a - b}} > 2\)
If common normal is other than the axis, then only option (b) satisfies.
\(\Rightarrow \frac{c}{{2a - b}} > 2\)
\(\Rightarrow \frac{3}{{2 - 1}} > 2\)
∴ 3 > 2