Correct Answer - Option 2 :
\(\frac{{8\pi }}{3}\)
Concept:
The magnitude of its velocity in SI units is equal to that of its acceleration
In simple harmonic motion, position (x), velocity (v) and acceleration (α) of the particle are given by
Position (x) is given by,
x = A sin ωt
Velocity (v) is given by,
\(v = \omega \sqrt {{A^2} - {x^2}} \)
\(v = \omega \sqrt {{A^2} - {{\left( {A\sin \omega t} \right)}^2}}\)
\(v = \omega \sqrt {{A^2} - {A^2}{{\sin }^2}\omega t}\)
\(v = A\omega \sqrt {1 - {{\sin }^2}\omega t} \)
\(v = A\omega \sqrt {{{\cos }^2}\omega t}\)
\(v = A\omega \cos \omega t\)
Acceleration (\(\alpha \)) is given by,
α = -ω2 x
α = -ω2 A sin ωt
Calculation:
Given,
Amplitude = 5 cm.
Displacement x = 4 cm
At this time (when x = 4 cm), velocity and acceleration have same magnitude.
\(\Rightarrow \left| {{v_{x = 4}}} \right| = \left| {{\alpha _{x = 4}}} \right|\;\)
\(\left| {\omega \sqrt {{A^2} - {x^2}} } \right| = \left| { - {\omega ^2}x} \right|\)
\(\left| {\omega \sqrt {{5^2} - {4^2}} } \right| = \left| { - 4{\omega ^2}} \right|\)
\(\left| {\omega \sqrt {25 - 16} } \right| = \left| { - 4{\omega ^2}} \right|\)
\(\left| {\omega \sqrt 9 } \right| = \left| { - 4{\omega ^2}} \right|\)
3ω = +4ω2
\(\Rightarrow \omega = \left( {\frac{3}{4}} \right)rad/s\)
So, time period,
\(T = \frac{{2\pi }}{\omega }\)
\(\Rightarrow T = \frac{{2\pi }}{3} \times 4 = \frac{{8\pi }}{3}s\)
Therefore, its periodic time (in seconds) is
\(\frac{{8\pi }}{3}\) s.