Correct Answer - Option 3 :
\(\sqrt {{a_1}{a_2}} t\)
Concept:
The relation between velocity and time is a simple one during uniformly accelerated, straight-line motion. The longer the acceleration, the greater the change in velocity. Change in velocity is directly proportional to time when acceleration is constant. If velocity increases by a certain amount in a certain time, it should increase by twice that amount in twice the time.
Calculation:
From question, we need to find the value of ‘v’ which is difference between the velocity of the car ‘A’ and ‘B’, which is:
v = vA - vB
The car ‘A’ takes to time which is less than car ‘B’ which takes ‘t + to’
The acceleration of car ‘A’ is given as:
\({a_1} = \frac{{{v_A}}}{{{t_o}}} \Rightarrow {v_A} = {a_1}{t_o}\)
The acceleration of car ‘B’ is given as:
\({a_2} = \frac{{{v_B}}}{{t + {t_o}}} \Rightarrow {v_B} = {a_2}\left( {t + {t_o}} \right)\)
Now, the velocity ‘v’ is:
⇒ v = a1 to - a2 (t + to)
⇒ v = (a1 - a2)to - a2t
Now, the position of the car is given by the formula:
\(s = ut + \frac{1}{2}at\)
Where,
u = Initial velocity
t = Time
a = Acceleration
The position of car ‘A’ is:
\(\Rightarrow {s_A} = \left( {0 \times {t_o}} \right) + \frac{1}{2}\left( {{a_1}.t_o^2} \right)\)
\(\therefore {s_A} = \frac{1}{2}\left( {{a_1}.t_o^2} \right)\)
The position of car ‘B’ is:
\(\Rightarrow {s_B} = \left( {0 \times \left( {t + {t_o}} \right)} \right) + \frac{1}{2}\left( {{a_2}.{{\left( {{t_o} + t} \right)}^2}} \right)\)
\(\therefore {s_B} = \frac{1}{2}\left( {{a_2}.{{\left( {{t_o} + t} \right)}^2}} \right)\)
From question,
sA = sB
\(\Rightarrow \frac{1}{2}\left( {{a_1}.t_o^2} \right) = \frac{1}{2}\left( {{a_2}.{{\left( {{t_o} + t} \right)}^2}} \right)\)
\(\Rightarrow {a_1}.t_o^2 = {a_2}.{\left( {{t_o} + t} \right)^2}\)
Taking square root on both sides,
\(\Rightarrow \sqrt {{a_1}} .{t_o} = \sqrt {{a_2}} .\left( {{t_o} + t} \right)\)
\(\Rightarrow \sqrt {{a_1}} .{t_o} = \sqrt {{a_2}} .{t_o} + \sqrt {{a_2}} .t\)
\(\Rightarrow \sqrt {{a_1}} .{t_o} - \sqrt {{a_2}} .{t_o} = \sqrt {{a_2}} .t\)
\(\Rightarrow {t_o}\left( {\sqrt {{a_1}} - \sqrt {{a_2}} } \right) = \sqrt {{a_2}} .t\)
\(\therefore {t_o} = \frac{{\sqrt {{a_2}} .t}}{{\sqrt {{a_1}} - \sqrt {{a_2}} }}\)
Now, the velocity is:
\(\Rightarrow v = \left( {{a_1} - {a_2}} \right)\left( {\frac{{\sqrt {{a_2}} .t}}{{\sqrt {{a_1}} - \sqrt {{a_2}} }}} \right) - {a_2}t\)
\(\Rightarrow v = \left( {\sqrt {{a_1}} + \sqrt {{a_2}} } \right)\left( {\sqrt {{a_1}} - \sqrt {{a_2}} } \right)\left( {\frac{{\sqrt {{a_2}} .t}}{{\sqrt {{a_1}} - \sqrt {{a_2}} }}} \right) - {a_2}t\)
\(\Rightarrow v = \left( {\sqrt {{a_1}} + \sqrt {{a_2}} } \right)\left( {\sqrt {{a_2}} .t} \right) - {a_2}t\)
\(\Rightarrow v = \sqrt {{a_1}{a_2}} .t + {a_2}t - {a_2}t\)
\(\therefore v = \sqrt {{a_1}{a_2}} .t\)