Correct Answer - Option 4 :
\(\frac{1}{{{{\rm{N}}^2}}}\)
Concept:
The wire of length L is made into circular loop.
Let the radius of the loop be R1
The length of the wire = The circumference of the loop
L = 2πR1
\(\Rightarrow {{\rm{R}}_1} = \frac{{\rm{L}}}{{2{\rm{\pi }}}}\)
The magnetic field BL at the centre of the loop is given by the formula:
\({{\rm{B}}_{\rm{L}}} = \frac{{{{\rm{\mu }}_0}{\rm{I}}}}{{2{{\rm{R}}_1}}}\)
\(\Rightarrow {{\rm{B}}_{\rm{L}}} = \frac{{{{\rm{\mu }}_0}{\rm{I}}}}{{2\left( {\frac{{\rm{L}}}{{2{\rm{\pi }}}}} \right)}}\)
\(\therefore {{\rm{B}}_{\rm{L}}} = \frac{{{{\rm{\mu }}_0}{\rm{I\pi }}}}{{\rm{L}}}\) ----(1)
The wire of length L is made into circular coil with N turns. Let the radius of the coil be R2
The length of the wire = The circumference of the coil
L = N(2πR2)
\(\Rightarrow {{\rm{R}}_2} = \frac{{\rm{L}}}{{2{\rm{\pi N}}}}\)
The magnetic field BC at the centre of the coil is given by the formula:
\({{\rm{B}}_{\rm{C}}} = {\rm{N}}\left( {\frac{{{{\rm{\mu }}_0}{\rm{I}}}}{{2{{\rm{R}}_2}}}} \right)\)
\(\Rightarrow {{\rm{B}}_{\rm{C}}} = {\rm{N}}\left( {\frac{{{{\rm{\mu }}_0}{\rm{I}}}}{{2\left( {\frac{{\rm{L}}}{{2{\rm{\pi N}}}}} \right)}}} \right)\)
\(\therefore {{\rm{B}}_{\rm{C}}} = \frac{{{\rm{N}}{{\rm{\mu }}_0}{\rm{I}}\left( {{\rm{\pi N}}} \right)}}{{\rm{L}}}\)
Calculation:
Now, from the question,
\(\Rightarrow \frac{{{{\rm{B}}_{\rm{L}}}}}{{{{\rm{B}}_{\rm{C}}}}} = \frac{{\frac{{{{\rm{\mu }}_0}{\rm{I\pi }}}}{{\rm{L}}}}}{{\frac{{{\rm{N}}{{\rm{\mu }}_0}{\rm{I}}\left( {{\rm{\pi N}}} \right)}}{{\rm{L}}}}}\)
\(\Rightarrow \frac{{{{\rm{B}}_{\rm{L}}}}}{{{{\rm{B}}_{\rm{C}}}}} = \frac{{{{\rm{\mu }}_0}{\rm{I\pi }}}}{{\rm{L}}} \times \frac{{\rm{L}}}{{{\rm{N}}{{\rm{\mu }}_0}{\rm{I}}\left( {{\rm{\pi N}}} \right)}}\)
\(\therefore \frac{{{{\rm{B}}_{\rm{L}}}}}{{{{\rm{B}}_{\rm{C}}}}} = \frac{1}{{{{\rm{N}}^2}}}\)