Correct Answer - Option 2 : 3.2 × 10
3 km
Concept:
The energy required to take a satellite to a height 'h' above earth’s surface is difference between the energy at height ‘h’ and energy at surface, then,
⇒ E1 = Uh - Ui
Since we need to find the energy at that point, the gravitational potential energy is used here.
The gravitational potential energy is given by the formula:
\({\rm{U}} = - \frac{{{\rm{GMm}}}}{{\rm{r}}}\)
The energy at height ‘h’ is given by the formula:
\({{\rm{U}}_{\rm{h}}} = - \frac{{{\rm{G}}{{\rm{M}}_{\rm{e}}}{\rm{m}}}}{{{{\rm{R}}_{\rm{e}}} + {\rm{h}}}}\)
The energy at surface is given by the formula:
\({{\rm{U}}_{\rm{i}}} = - \frac{{{\rm{G}}{{\rm{M}}_{\rm{e}}}{\rm{m}}}}{{{{\rm{R}}_{\rm{e}}}}}\)
On substituting the values of energy in above energy equation,
\(\Rightarrow {{\rm{E}}_1} = - \frac{{{\rm{G}}{{\rm{M}}_{\rm{e}}}{\rm{m}}}}{{{{\rm{R}}_{\rm{e}}} + {\rm{h}}}} + \frac{{{\rm{G}}{{\rm{M}}_{\rm{e}}}{\rm{m}}}}{{{{\rm{R}}_{\rm{e}}}}}\)
The kinetic energy (E2) required for the satellite to be in a circular orbit at this height is given by the formula:
\({{\rm{E}}_2} = \frac{1}{2}{\rm{m}}{{\rm{v}}^2}\)
Where,
m = Mass of the satellite
v = Velocity of the satellite while it is moving in circular orbit
The velocity of the satellite when it is orbiting is given by the formula:
\({\rm{v}} = \sqrt {\frac{{{\rm{G}}{{\rm{M}}_{\rm{e}}}}}{{{{\rm{R}}_{\rm{e}}} + {\rm{h}}}}} \)
On substituting velocity in kinetic energy in the equation,
\({{\rm{E}}_2} = \frac{{\rm{m}}}{2}\left( {\frac{{{\rm{G}}{{\rm{M}}_{\rm{e}}}}}{{{{\rm{R}}_{\rm{e}}} + {\rm{h}}}}} \right)\)
Calculation:
From question, we need to find the height where both the energies E1 and E2 are equal.
\(\Rightarrow - \frac{{{\rm{G}}{{\rm{M}}_{\rm{e}}}{\rm{m}}}}{{{{\rm{R}}_{\rm{e}}} + {\rm{h}}}} + \frac{{{\rm{G}}{{\rm{M}}_{\rm{e}}}{\rm{m}}}}{{{{\rm{R}}_{\rm{e}}}}} = \frac{{\rm{m}}}{2}\left( {\frac{{{\rm{G}}{{\rm{M}}_{\rm{e}}}}}{{{{\rm{R}}_{\rm{e}}} + {\rm{h}}}}} \right)\)
\(\Rightarrow {\rm{G}}{{\rm{M}}_{\rm{e}}}{\rm{m}}\left[ { - \frac{1}{{{{\rm{R}}_{\rm{e}}} + {\rm{h}}}} + \frac{1}{{{{\rm{R}}_{\rm{e}}}}}} \right] = {\rm{G}}{{\rm{M}}_{\rm{e}}}{\rm{m}}\left[ {\frac{1}{{2\left( {{{\rm{R}}_{\rm{e}}} + {\rm{h}}} \right)}}} \right]\)
\(\Rightarrow - \frac{1}{{{{\rm{R}}_{\rm{e}}} + {\rm{h}}}} + \frac{1}{{{{\rm{R}}_{\rm{e}}}}} = \frac{1}{{2\left( {{{\rm{R}}_{\rm{e}}} + {\rm{h}}} \right)}}\)
\(\Rightarrow \frac{1}{{{{\rm{R}}_{\rm{e}}}}} = \frac{1}{{2\left( {{{\rm{R}}_{\rm{e}}} + {\rm{h}}} \right)}} + \frac{1}{{\left( {{{\rm{R}}_{\rm{e}}} + {\rm{h}}} \right)}}\)
\(\Rightarrow \frac{1}{{{{\rm{R}}_{\rm{e}}}}} = \frac{{1 + 2}}{{2\left( {{{\rm{R}}_{\rm{e}}} + {\rm{h}}} \right)}}\)
⇒ 2Re + h = 3Re
⇒ 2Re + 2h = 3Re
⇒ 2h = 3Re - 2Re
⇒ 2h = Re
\(\Rightarrow {\rm{h}} = \frac{{{{\rm{R}}_{\rm{e}}}}}{2}\)
We know that, Re = 6.4 × 103 km
\(\Rightarrow {\rm{h}} = \frac{{6.4{\rm{\;}} \times {\rm{\;}}{{10}^3}}}{2}\)
∴ h = 3.2 × 10
3 km