Correct Answer - Option 1 : 10
Calculation:
Here A and B are reactant,
Let the rate expression is r ∝ [A]a [B]b
Here, r is rate of expression
By taking from experiment 1,
\(\frac{{{r_2}}}{{{r_1}}} = {\left( {\frac{{0.1}}{{0.1}}} \right)^a} \times {\left( {\frac{{0.25}}{{0.25}}} \right)^b}\)
\(\frac{{6.93{\rm{\;}} \times {{10}^{ - 2}}}}{{6.93{\rm{\;}} \times {{10}^{ - 2}}}} = 1 \times {\left( {\frac{5}{4}} \right)^b}\)
\(1 = {\left( {\frac{5}{4}} \right)^b} \Rightarrow {\left( {\frac{5}{4}} \right)^0} = {\left( {\frac{5}{4}} \right)^b} \Rightarrow b = 0\)
From the experiment 2, \(\frac{{{r_3}}}{{{r_1}}} = {\left( {\frac{{0.2}}{{0.1}}} \right)^a} \times {\left( {\frac{{0.30}}{{0.1}}} \right)^b}\)
\(\frac{{1.386{\rm{\;}} \times {{10}^{ - 2}}}}{{0.6.93{\rm{\;}} \times {{10}^{ - 2}}}} = {2^a} \times {\left( {1.5} \right)^a}\)
2 = 2a × 1 ⇒ 21 = 2a ⇒ a = 1
So r ∝ [A]1 [B]0 ⇒ r ∝ [A]
Order of the reaction (n) = 1
Now, let for the 1st experiment
r1 = k.[A]
\(K = \frac{{{r_1}}}{{\left[ A \right]}}\)
\(= \frac{{6.93{\rm{\;}} \times {{10}^{ - 2}}}}{{0.1}}\)
= 6.93 × 10-2 s-1
\({t_{50}} = {\rm{\;}}\frac{{0.6.93}}{{6.93{\rm{\;}} \times {{10}^{ - 2}}}} = 10\;s\)