Correct Answer - Option 2 : the minimum of x and y
Case 1: When x > y
\(\frac{{\left( {x + y} \right) - \left| {x - y} \right|}}{2} = \frac{{\left( {x + y} \right) - \left( {x - y} \right)}}{2} = y\)
Case 2: When x < y
\(\frac{{\left( {x + y} \right) - \left| {x - y} \right|}}{2} = \frac{{\left( {x + y} \right) - \left( {y - x} \right)}}{2} = x\)
The given function can be written as
\(\frac{{\left( {x + y} \right) - \left| {x - y} \right|}}{2} = \left\{ {\begin{array}{*{20}{c}} {y,\;x > y}\\ {x,\;x < y} \end{array}} \right.\)
So, the given expression is equal to the minimum of x and y.