Correct Answer - Option 4 :
\(\frac{1}{3} - \frac{1}{4}j\)
Concept:
In case of linear phase FIR filter, to have a one zero, z = 0 as z0 other zeros are.
\({z_0},\frac{1}{{{z_0}}},\left[ {z_0^*} \right],{\left[ {\frac{1}{{{z_0}}}} \right]^*}\)
Analysis:
Z0 = 3 + 4j
\(\left[ {z_0^*} \right] = 3 - 4j\)
\(\frac{1}{{{z_0}}} = \frac{1}{{3 + 4j}} = \frac{{3 - j4}}{{25}} = \frac{3}{{25}} - \frac{{j4}}{{25}}\)
\({\left[ {\frac{1}{{{z_0}}}} \right]^*} = \frac{3}{{2j}} + j\frac{4}{{25}}\)